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How Infections Propagate After Point-Source Outbreaks
An Analysis of Secondary Norovirus Transmission

Jonathan L. Zelner,a,b,c Aaron A. King,c,d,e,f Christine L. Moe,g and Joseph N. S. Eisenbergc,h

Background: Secondary transmission after point-source outbreaks
is an integral feature of the epidemiology of gastrointestinal patho-
gens such as norovirus. The household is an important site of these
secondary cases. It can become the source of further community
transmission as well as new point-source outbreaks. Consequently,
time-series data from exposed households provide information for
risk assessment and intervention.
Methods: Analysis of these data requires models that can address
(1) dependencies in infection transmission, (2) random variability
resulting from households with few members, and (3) unobserved
state variables important to transmission. We use Monte Carlo
maximum likelihood via data augmentation for obtaining estimates
of the transmission rate and infectious period from household
outbreaks with the 3 above features.
Results: We apply this parameter estimation technique to 153
infection sequences within households from a norovirus outbreak in
Sweden and obtain maximum likelihood estimates of the daily rate
of transmission (!̂ ! 0.14, 95% confidence interval "CI# ! 0.08–
0.24) and average infectious period (1/"̂ ! 1.17 days, 95% CI !
1.00–1.88). We also demonstrate the robustness of the estimates to
missing household sizes and asymptomatic infections.
Conclusions: Maximum likelihood techniques such as these can be
used to estimate transmission parameters under conditions of unob-
served states and missing household size data, and to aid in the

understanding of secondary risks associated with point-source
outbreaks.

(Epidemiology 2010;21: 711–718)

Norovirus is a highly-infectious gastrointestinal pathogen
that affects all age groups.1 Investigations of primary

point-source outbreaks, therefore, often focus on secondary
cases.2,3 Households constitute a particularly important site
of these secondary cases, as living in close proximity facili-
tates a higher effective rate of contact, particularly for dis-
eases where the fecal-oral route is important to transmission.
This household transmission contributes to overall disease
burden, and individuals infected at the household level may
generate infections in the community that result in new
point-source outbreaks that infect many people at one time.

From 1997 through 2002, norovirus was responsible for
93% of nonbacterial gastroenteritis outbreaks in the United
States.4 The high incidence of norovirus is attributable both to
its low infectious dose1 and its ability to survive in the
environment.5 As a leading cause of gastroenteritis world-
wide,6 norovirus is an important concern for local public
health departments as well the US Environmental Protection
Agency (EPA). It is important, therefore, to develop effective
intervention and control strategies for norovirus and similar
pathogens. These require both reliable estimates of household
transmission parameters and effective analytic tools for ob-
taining these estimates.

Although there have been studies of community noro-
virus outbreaks,7 there are no studies that quantify transmis-
sion dynamics in the community using a dynamic model. One
of the difficulties of these studies is that we often observe
only the time of symptom onset for infectious cases. Unob-
served events typically include infection and recovery and the
times at which these occur. Properly describing the transmis-
sion dynamics in household systems necessitates the use of
mechanistic models that account for unobserved state vari-
ables (eg, the number of infectious and susceptible individ-
uals at any given time), and the more pronounced random
variability in outbreaks in small populations.

In this paper, we develop tools to address these chal-
lenges and analyze household data collected subsequent to a
norovirus outbreak. Götz et al8 followed a series of 153
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households exposed to norovirus after a 1999 point-source,
food-borne outbreak within a network of daycare centers in
Stockholm, Sweden. For each of these households, one per-
son (the household index case) was infectious and symptom-
atic due to the point-source outbreak, and the time of symp-
tom onset for all subsequent cases was recorded. We denote
each of these case sequences as a time series.

We analyze these outbreak data using a dynamic
model, and obtain maximum likelihood estimates of the
household transmission parameter, !, and the average dura-
tion of infectiousness, 1/", where " is the mean daily rate of
recovery from infectiousness. We find that the observation of
multiple household time-series may provide enough informa-
tion to mitigate the absence of observed infection times,
infectious periods and household sizes.

METHODS

Data
Illness data were obtained from a published study of a

food-borne norovirus outbreak in 30 daycare centers in
Stockholm, Sweden in 1999.8 The origin of this outbreak was
a single food-service worker who shedded norovirus while
preparing lunches that were distributed from a central loca-
tion to 30 daycare centers throughout Stockholm. At the time
of the outbreak this worker was infectious but had no overt
symptoms.

Among 775 subjects surveyed after the outbreak, 195
cases of gastroenteritis were identified, 176 as norovirus.
Among those subjects with norovirus infections, 23 lived
alone, 49 lived in households where transmission occurred,
and 104 lived with one or more persons but with no observed
transmission. Nineteen subjects were excluded because they
lived in households with pre-existing cases of gastroenteritis
at the time of the outbreak. The primary dataset used in this
analysis consists of time series from the 153 exposed house-
holds with 2 or more members.

Data were collected retrospectively for the 9 days
following the onset of symptoms in index cases. The data
consist of the times that cases became symptomatic, reported
to the nearest 12 hours and normalized (with the onset of
symptoms in the index case set to time zero). Stool samples
were collected from 5 symptomatic individuals, and the
presence of norovirus was confirmed via electron micros-
copy. Remaining cases were diagnosed based on a norovirus
screening interview and a confirmed exposure to a household
member infected at the point-source event. Figure 1 provides
a visual depiction of the household time-series data for
exposed households with secondary cases (modified from the
paper by Götz et al,8 Fig. 5).

When describing household transmission dynamics, we
assume that the onset of symptoms corresponds to the begin-
ning of the infectious period. This is supported by a con-
trolled norovirus dosing trial in which early shedding in the

absence of symptoms occurred primarily in persons who
never became symptomatic.9 Our model also allows the
infectious period to be longer than the symptomatic period,
which is typical of norovirus infections.9,10

In addition, we estimate the distribution of the incubation
period, using data reported for the Stockholm outbreak8 on the
time lag between the point-source event and the onset of symp-
toms in the 153 household index cases. A gamma distribution
with mean 1/#, and shape parameter #s was fit to these incuba-
tion time data by maximum likelihood (1/#̂! 1.7 days; #̂s ! 3.73
"SE ! 0.048#) (Fig. 2). To fit the assumptions of the compart-
mental transmission model described in the following section,
we round the estimated shape parameter to the nearest integer.
However, our estimation approach is robust to models with
arbitrarily-distributed infectious periods.

When estimating parameters of the infection-process
model, we characterize the infectious period as gamma dis-
tributed with an unknown mean and shape parameter. House-
hold sizes were not reported in the original outbreak dataset.
To address this missing data issue, census data on the distri-

FIGURE 1. Time series for 49 households with secondary
infections from Götz et al8 data. Time of symptom onset, to
nearest 12 hours, is denoted by F.
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bution of Swedish household sizes during the study period
were incorporated into our analysis.

Because the Stockholm outbreak data include only the
time of symptom onset, we are unable to directly estimate the
rate at which asymptomatic infections were created. Account-
ing for asymptomatic infections is important, as they have
been estimated to comprise from 12% to 50% of norovirus
cases.11–14 Additional analysis was conducted to assess the
impact of increasing levels of asymptomatic infection on our
results.

Model
We treat the household infection process as a continu-

ous-time Markov chain, where persons can be in one of 4
states: susceptible (S), exposed/incubating (E), symptomatic/
infectious (I) and recovered (R) (Fig. 3). The daily transmis-
sion rate, !, is defined as rate of contact at time t multiplied
by the probability that contact between a susceptible and an
infected person results in transmission. We account for the
baseline risk of community and environmental infection
through the parameter $, which is measured in terms of the
daily risk of infection per susceptible. The incubation and

infectious periods are assumed to follow gamma distribu-
tions, where each is defined by a mean duration (1/#, 1/") and
shape parameter (#s, "s). The shape parameters for the dis-
tributions of the incubation and infectious periods can be
thought of as the number of stages that persons pass through
before they are either infectious or recovered, respectively.
These stages are represented by the first-order compartments
in Figure 3.

At any given time, t, the hazard, %t, to each susceptible
in a household is defined by the force of infection,

%t ! !It $ $ (1)

where It denotes the total number of infectious persons in a
household at time t. Consistent with a Poisson process, we
assume that these waiting times are exponentially distributed
with mean 1/%t. Under these assumptions, the probability of
observing one or more infections over this interval %t is the
exponential cumulative distribution function.

PInfection (t, t $ %t) ! 1 & exp(–%tSt%t) (2)

The classic model for infectious disease dynamics is the
flow of hosts among various compartments defined as suscepti-
ble, exposed but not infectious, infectious, and recovered
(SEIR). To generate sample data for evaluating the statistical
method described in the next section, we use the force of
infection (Eq. 1), gamma-distributed incubation and infectious
periods, and household sizes drawn from the census distribution
in a stochastic SEIR simulation model. Implementation details
are available in the supplementary materials.

Data Model
First, we define a likelihood function for an infection

time series when all 4 individual states (susceptible, exposed/
incubating, infectious, and recovered) are observable, and
only the transmission parameters ! and $ are unknown. We
then outline a data augmentation method10 that allows us to
extend this likelihood function to the case in which some
states are unobserved (Fig. 4).

Likelihood
The household time series is described as a series of

system states, qij ! {Sij,Eij,Iij,Rij}, for each household, i, and
state, j, where NQ is the number of distinct system states in a
household time series and Qi ! {qi,0 … qi,NQ} is the entire set
of states in a household in chronological order (Fig. 4).
Beginning times for each system state are denoted tij. Three
state transitions are possible: infection, onset of symptoms
(and infectiousness), and recovery. The states of the system
immediately before the occurrence of infection events, where
infection is defined as a transition into E, are indexed by k and
denoted as vik ! Vi, where Vi " Qi. The number of infections
in a household observation is NK.

FIGURE 2. Histogram and ML gamma distribution of incuba-
tion times from Götz et al8 data.

FIGURE 3. Flow diagram showing first and second order
compartments in SEIR transmission model. The density-depen-
dent infection rate is ! and $ is the rate of community
transmission. The rate of transition from incubation to symp-
toms (and infectiousness) and from infectiousness to recovery
are # and ", respectively.
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With this notation, qi,0 corresponds to the state of
household i immediately after the onset of symptoms in the
index case, and vi,0 corresponds to the state of the household
immediately before the first household infection.

Assuming that the times of infection, symptom onset,
and recovery are known, we can formulate the household
likelihood function as the product of 2 terms: (1) the likeli-
hood of observing no new cases during the %t between all
state transitions (!a) and (2) the likelihood of infection at the
time when new infection events are observed (!b).

The expected number of new infections for a given
household, i, at state j, is given by:

&(Sij,Iij,!,$) ! Sij(!Iij $ $) (3)

The first term, !a, is the probability of observing no
infections over all of the time intervals between states:

!i,a ' '
j!0

NQ&1

exp(&&(Sij,Iij,!,$)(tj$1 ( tj)) (4)

The second, !b, describes the joint likelihood of all
observed infection events, ie, the product of all instantaneous
infection probabilities at times when infection events are
observed:

!i,b ' '
k!1

NK

&(Sik,Iik,!,$) (5)

FIGURE 5. Profile likelihood plot of Stockholm outbreak data. Transmission rate (!) and mean infectious period (1/") are on the
x-axis in panels A and B, respectively. On the y-axis is negative log-likelihood values for a given ! or " when it is held fixed and
the other parameters of interest are optimized. “x” denotes the location of the maximum likelihood estimates and the horizontal
bar shows the width of the 95% CI.

FIGURE 4. Three hypothetical infection histories where the only observed state transition is the onset of symptoms (denoted by
F). Each of the 3 example histories illustrate different possibilities for the 2 unobserved state transitions, infection (denoted by x)
and recovery (denoted by E). Values, qij, under the bottom series are the complete state of the system in household h at state i,
where S, E, I, R, are the number of individuals in the susceptible, incubation, infectious and recovered states, respectively; hj is the
number of individuals in household j.
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Based on these definitions, the likelihood of the data for
household i, given ! and $, is:

!i ' !i,a ) !i,b (6)

The product of the likelihoods for all observed house-
holds is taken to be the likelihood of the entire observed
outbreak, O:

!O ' '
i!H

!i (7)

Data Augmentation
The observed data consist of the times of symptom

onset in new cases, represented by increments to the house-
hold infectious-state variable Ii, and, by consequence, decre-
ments to the state variable Ei. We do not observe infection
events for household cases; this is represented by an incre-
ment to the household incubating state Ei and a decrement in
the number of susceptibles Si. We also do not observe
recovery from infectiousness, represented by an increment to
the household immune state Ri (and decrement in Ii). Because
all states are necessary to characterize the transmission dy-
namics of the system, but only transitions into state I are
observed, a method is needed to evaluate the likelihood. To
address this missing-data problem, we generate an augmented
household time series by sampling from our incubation and
infectious period distributions (mean, shape ! 1/#,#s and
1/","s, respectively) for each case, as described by Cooper et
al.15 We account for right-censoring by following the con-
vention that all recovery times greater than the observation
period, tf, are truncated to be equal to tf. This returns the
correct likelihood of the data when sampled recovery times
are outside the observation window. In this way, we create an
outbreak realization with all states accounted for. Using this
augmented dataset, we can calculate the likelihood. We
repeat this process many times, resampling new times from
the distributions and calculating a new likelihood each time.
The mean of this set of sampled likelihoods approximates the
true likelihood of the household time series. This procedure is
equivalent to Monte Carlo numerical integration with impor-
tance sampling16 and is depicted visually in Figure 4. (See
papers by Rampey et al17 and Rhodes18 for alternative ap-
proaches to estimating transmission parameters with this type
of data.)

We obtain a likelihood estimate for an entire outbreak
by augmenting all households 104 times and estimating their
joint likelihood (Eq. 7). Because we are sampling incubation
and infectious periods proportionally from their joint distri-
bution, the expectation of this set of likelihoods approximates
the likelihood of the data, given the parameters vector * !
{$,!,1/#,#s,1/","s}.

In the Stockholm outbreak dataset, the number of
people in each household is unobserved. We account for

these missing data with household size data obtained from a
national census19 and combine this with information from the
household observations; the number of household members
must be equal to or greater than the number of observed
cases. We combine the census distribution with this lower
bound on size for each household to construct a conditional
distribution of sizes for each household. When an augmented
household time series is generated, a size is sampled from this
distribution, allowing us to incorporate and bound our uncer-
tainty regarding household sizes when estimating the likeli-
hood. In the following section we will demonstrate that this
does not have a significant negative impact on our results. For
details on the implementation of the data augmentation pro-
cedure, see the eAppendix (http://links.lww.com/EDE/A400).

The Table lists the 2 parameterizations used in the
analysis. Parameter set 1 uses case and incubation-period data
from the Stockholm outbreak. We estimate the transmission
parameter, !, as well as the mean, 1/", and shape parameter
"s of the distribution of the infectious period. We constrain
our parameter search to values of 1/" *1 day, as durations of
symptomatic shedding less than 1 day are biologically im-
plausible.10,11 Parameter set 2 consists of the population
parameter values of a single 153-household outbreak realiza-
tion from the stochastic model, with household sizes drawn
from the census distribution. With these simulated data, we
estimate ! and 1/" under 2 conditions: known household
sizes and unknown household sizes.

RESULTS
Figure 5 contains the maximum likelihood estimates

and confidence intervals of both the main transmission pa-
rameter (!̂ ! 0.14 "95% confidence interval {CI} ! 0.08–
0.24#; Fig. 5A) and average duration of infectiousness (1/
"̂ ! 1.17 days "1.00–1.88#; Fig. 5B) for the Stockholm
outbreak. We also estimated the shape parameter for the
duration of infectiousness ("s ! 1.0 "1.0–2.0#; not pictured).
Figure 6 is a contour plot showing a 2-dimensional likelihood
profile with respect to ! and 1/". Each cell contains the
likelihood corresponding to the optimized value of "s for each
(!,1/") pair. We also estimate the parameters when $ ! 0.01
and obtain similar results ("!̂ ! 0.13 "0.07–0.22#; 1/"̂ ! 1.0
days "1.0–1.33#; "s ! 1.0 "1.0–2.0#; not pictured). Thus there
is likely some bias in our estimated beta due to environmental
infection, but this bias is small.

To examine the impact of unknown household sizes,
we created a simulated dataset with parameters ! ! 0.14
(transmission rate), $ ! 0.001 (background transmission
rate), 1/# ! 1.5 days, #s ! 4.0, (incubation period), 1/" !
1.17 days, "s ! 1.0 (duration of infectiousness) (Table,
Parameter Set 2). We then estimated 2 of these parameters,
the transmission rate and average duration of infectiousness,
under 2 conditions: (1) where actual household sizes are
explicitly included in the estimation (dashed line: !̂unknownHH !
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0.139 "95% CI ! 0.087–0.273#, 1/"̂unknownHH ! 1.21 days
"0.625–1.88#, Fig. 7A); and (2) where household sizes are
drawn from the census distribution (solid line: !̂unkownHH !
0.133 "0.079–0.259# 1/"̂unknownHH ! 1.21 days "0.63–1.88#,
Fig. 7B).

Asymptomatic Infection
To understand the impact of unobserved asymptomatic

infections, we performed a simulation-based sensitivity anal-

ysis that allows us to predict the value of the transmission
parameter, !, for varying proportions of asymptomatic infec-
tions, +.

We find that, starting from our maximum likelihood
estimate of ! ! 0.14 when + ! 0, the predicted value of !
increases linearly by approximately 0.035 units for each 10%
increase in + (Fig. 8). For further details on the design and
implementation of this analysis, see the eAppendix
(http://links.lww.com/EDE/A400).

DISCUSSION
Using a collection of household-exposure and illness-

onset time series, we have obtained estimates (and their
confidence intervals) for the household person-to-person in-
fection rate and average infectious period for norovirus. We
also predict the value of the transmission parameter ! as a
function of the proportion of asymptomatic infections. We
obtained these estimates despite the absence of potentially
important data, including infection times, recovery times, and
household sizes. The inclusion of census data with house-
hold-specific lower bounds (due to the number of observed
cases) allowed us to obtain an accurate estimate of household
force of infection in the absence of directly observed house-
hold sizes.

Although the pattern of contact in households tends to
fit the standard mass-action assumption in susceptible-infected-
removed models,20 their typically small sizes require careful
consideration of the influence of random variability on re-
sults, obviating the use of deterministic models.21,22 This is a
topic that has received considerable attention, and there is an
extensive literature on techniques for fitting stochastic models
to outbreak data18,23,24 in a variety of settings (eg, commu-
nities,25 schools26 and households27). Using household-level
infection data at the end of an outbreak, Longini et al24

generated estimates of household and community parameters
for the distribution of final household outbreak sizes. How-
ever, because their method was developed to explain final-
size data from public health reports and does not use temporal
information, it provides only limited insights regarding the
interaction between infectivity and the durations of the incu-
bation and recovery periods in outbreak time-series.

Hohle et al28 present a technique that could be useful
with household time-series data. They use Bayesian inference
to estimate transmission parameters in spatially heteroge-
neous SEIR models, and innovate on previous Markov-chain-
Monte-Carlo-based techniques by allowing variability in the
incubation period. Two significant drawbacks of Bayesian
approaches are that: (1) even when care is taken to use
noninformative prior distributions, these priors can condition
estimates,29 and (2) the results can be difficult to interpret,
particularly with respect to reproducibility.30 We have pre-
sented an alternative, frequentist approach that produces
maximum likelihood parameter estimates and allows a
straightforward exploration of the likelihood surface.

FIGURE 6. Two-dimensional likelihood profile for Stockholm
outbreak data. A filled triangle denotes the location of the
maximum likelihood estimates. Solid contours bound regions
of lesser or equal negative-log-likelihood (NLL) than the con-
tour label. The dash-dotted ellipsoid bounds the 95% confi-
dence region. The dashed line represents the relationship
between each value of the transmission rate (!) and the
corresponding maximum likelihood estimate of the value of
infectiousness period (1/") when ! is held fixed. The dotted
line represents this relationship in reverse, with points along
the x-axis corresponding to maximum likelihood values of !
for each ".

TABLE. Household, Pathogen, and Transmission Parameter
Sets

Parameter Set

Parameter Description Units 1 2

! Within-household
infectivity

Infections/day EST 0.14

$ Community infectivity Infections/day 0.001 0.001
1/, Average incubation period Days 1.7 1.7
#s Incubation period shape 4 4
1/" Average infectious period Days EST 1.17
"s Infectious period shape EST 1
h Household size Persons Unknown Known

EST indicates parameters to be estimated.
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Community transmission is undoubtedly more compli-
cated than our representation. Fixing the community trans-
mission parameter, $, to a value 2 orders of magnitude
smaller than the household transmission parameter, !, makes
the strong assumption that the within-household transmission
process is dominant. We show that our results are not very
sensitive to this assumption, and we argue that the assump-
tion is reasonable with respect to our data because all house-
holds in the Stockholm dataset had a known source of
exposure—an index case infected by the point-source out-
break—and all secondary cases identified in households oc-

curred in a plausible temporal sequence. A better estimate of
the rate of community transmission requires focused attention
on the mechanisms behind this process, which is outside of
the scope of both our dataset and this paper. This is an
important focus for future research. In addition, the data used
in this analysis come from only 9 days of observation,
resulting in right-censoring. While our inferences for the
transmission rate and effective duration of infectiousness in
the course of a household outbreak are valid, they are not
generalizable to community or regional scales.

Reliable transmission parameter estimates are critical to
risk assessments and exploratory modeling for public health
policy. The impact of interventions on norovirus prevalence
and persistence can be better assessed in a model such as ours
that includes realistic feedback in the transmission process
and empirically-derived transmission parameters.

Although the analysis presented here focuses on the trans-
mission of an infectious pathogen in a specific epidemiologic
and social context, the methods employed are relevant to other
problems in epidemiology and medicine, in which unobserved
variables strongly affect outcomes. We have focused on unob-
served within-host disease states and household sizes, but other
important variables, including contact structures and environ-
mental reservoirs, are often difficult to observe or missing from
otherwise-useful public-health surveillance data.

For example, social and economic factors are likely to
increase within-household transmission of pathogens such as
tuberculosis and shigellosis,31 by increasing host susceptibil-
ity to physical and social stress via mechanisms such as
allostatic load and household overcrowding.32 Administrative
records often include important information on the timing,

FIGURE 7. Likelihood profiles for simulated data, with respect to transmission rate, ! (A) and mean infectious period (1/") (B). The
dashed line is a profile where household sizes are known (location of the maximum likelihood estimates is denoted by F) and the
dash-dotted line estimates the parameters in the case where household sizes are uncertain (MLE: “x”), and the horizontal bars
span the 95% CI for both cases.

FIGURE 8. Expected household transmission rate, !, by in-
creasing proportion of asymptomatic infections, +, note that
the expected value of ! when + ! 0 is 0.14.
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geographic distribution, and infectious contacts of cases33 but
because of their focus on immediate control, often lack direct
observations of contacts that do not result in infections.
Consequently, we lack information on how those who be-
come ill and those who escape infection differ in contact
patterns and other factors important in transmission. Our
work suggests that case-data missing such information can be
combined with reasonable, empirically grounded models of
contact structures to yield important and useful insights even
in the absence of a full dataset. The next step is to apply this
approach to different pathogens in more complicated social
settings.
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eAppendix 

1. Stochastic SEIR Transmission Model Implementation 

 A sample outbreak is initialized by creating 153 households, with sizes hi, drawn 

from the census distribution of household sizes. The initial household state is set to 

, indicating that only the index case is symptomatic, all other 

household members being susceptible. The transmission model is summarized in the 

algorithm below, where S, E, I and R are the number of individuals in each state and the 

model is initialized at t=0: 

 

 

The model is stepped forward in hourly increments ( ), which gives a reasonable 

approximation of a continuous time infection process.  Rates are expressed in terms of 

days but scaled to the appropriate time step.  

The incubation and infectious periods are conceptualized as a sequence of  and 

 second-order compartments, with the probability of transition between these 

compartments for each individual equal to  and  . This process yields 

 and  transition rates that are gamma distributed with means  and shape 

If E + I > 0: 
 For s in S: 
  Draw x from Uniform(0,1] 
  If x <= : 
   S = S – 1 
   E = E + 1 
   Draw symptom onset time from  
   Draw recovery time from  
 t = t + dt 
 
At end of step, transition from  and  those who have 
symptom onset or recovery time <= t 

eAlgorithm 1 
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parameters , respectively. Transmission rates are also scaled in terms of  (see 

Equation 1). 

 

2. Asymptomatic Infections 

To assess the effect of unobserved asymptomatic infections, we implemented the 

stochastic SEIR model outlined above, with an additional parameter, , that controls the 

proportion of new infections that are asymptomatic: 

 

Asymptomatic infections are, in this simplified model, immediately moved to the 

immune class. This is because they are significantly less infectious than symptomatic 

infections, e.g., (10), and can be expected to generate cases on a longer timescale than our 

window of observation (9 days). Although they are unlikely to contribute significantly to 

observed within-household transmission dynamics, we expect that they are important to 

If E + I > 0: 
 For s in S: 
  Draw x from Uniform(0,1] 
  If x <= : 
   Draw y from Uniform(0,1] 
   If y <= : 
      S = S – 1 
    R = R + 1 
   Else: 
    S = S – 1 
    E = E + 1 
    Draw symptom onset time from  
    Draw recovery time from  
 

t = t + dt 
  
At end of step, transition from  and  those who have symptom 
onset or recovery time <= t 

eAlgorithm 2 
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the community-level persistence of norovirus and, as such, need to be accounted for in 

the estimate of rate of transmission. In this context, then, asymptomatic cases can be 

thought of as censored data that bias our estimate of the force of infection. 

When simulating outbreaks, we fix the background infection rate and the 

distribution of the incubation and infectious periods,( ! = 0.001, = 1.7 days,  = 4.0, 

= 1.14 days, = 1.0) and allow the transmission parameter, , and proportion of 

asymptomatic infections, , to vary. We then sample all 126 parameter combinations 

from  = {.10, .11, … ,0.30} and  = {0, 0.1, 0.2, 0.3, 0.4, 0.5}.  We draw 20 stochastic 

realizations of each parameter set and estimate the mean ML value of  (i.e., average 

over the 20 runs) for each ( , ) combination, as though  = 0. This gives a predicted 

value of  for each level of . Starting from our ML estimate of 0.14 for  when  = 0, 

the predicted value of  increases linearly by 0.035 units for each 10% for increase in  

(Figure 8).  

We test the sensitivity of these results to the assumption that asymptomatic 

individuals do not contribute to household transmission by allowing asymptomatic 

infections to be 10% as infectious as symptomatic ones. We find broadly similar results, 

with the predicted value of  increasing linearly by 0.028 units for each 10% increase in 

 (eFigure 1). 
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eFigure 1. Relationship of proportion asymptomatic to expected value of  when asymptomatic 
infections are 10% as infectious as symptomatic infections. 

 

3. Missing Household Sizes 

 Since all households in our dataset consist of two or more people, the minimum 

household size, h, is 2. We start with the empirical distribution of household sizes from a 

1990 census of household sizes in Sweden (see eTable), denoted as C, where C(h) is the 

probability of observing a household of size h in the total population . 

If the minimum possible number of individuals, i.e., the number of infections 

observed in a household, ,  is less than or equal to 2, the entire empirical distribution 

is used to sample a household size.  If , the number of cases observed is set as the 

minimum household size, with values smaller than  assigned a density of zero. We 
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assume that the case data provide no additional information on the distribution of the 

remaining household sizes, so the remaining sizes on the interval  are 

assigned a uniform density.   

This information is combined with the census data in the top row of eTable for 

each size to generate a distribution from which we can sample household sizes for h " 

: 

 

eEquation  
 

In order to sample random variates from this distribution, we compute the conditional 

CDF of the household size distribution and draw a random number on the interval (0,1], 

and select the smallest value of h where the CDF is less than equal to the random number. 

The second row of eTable shows the probability distribution resulting from this 

sampling procedure. We find that the expected household size increases slightly from 

3.73 to 3.87 individuals, with most of this change accounted for by a decrease in the 

density of households of size 2 to slightly larger ones.  

 

# Household Members  
2 3 4 5 6 7 8 9 10 

Census Density 0.325 0.193 0.248 0.108 0.027 0.041 0.024 0.017 0.017 

Sampled Density 0.283 0.192 0.265 0.115 0.031 0.047 0.027 0.018 0.019 
 eTable. Empirical Probability Distribution of Household Sizes 
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4. Model Validation 

 In order to validate the SEIR model used for simulation and parameter estimation, 

we performed additional simulation analysis using a Gillespie1 algorithm-based 

implementation of the model described in eAlgorithm 1, which is an exact, continuous-

time simulation of the transmission model.  

In each simulation, there are 153 households, the sizes of which are drawn from 

C, the empirical distribution of household sizes. At t=0, each household has a single 

index case. Model parameters are the same as those obtained from our statistical analysis 

(  = 0.14, =1.17 days, #s  = 1.0). For each of 1000 simulations, we record the number 

of households with no secondary cases, i.e., where there is stochastic die-out, and the 

average number of cases in households with secondary cases. 

We find that our simulation results are in good agreement with the Stockholm 

data for both outbreak size (Simulated mean = 1.9 cases, SD = .2, vs. 1.6 for Stockholm 

data; eFigure 2) and the number of simulated households in which there are no secondary 

cases (Simulated mean = 110.5 households, SD = 5.5 vs. 104 households for Stockholm 

data; eFigure 3). 
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eFigure  2. Histogram of average number of secondary cases in simulated household outbreaks. 

 

eFigure  3. Histogram of number of households with no secondary cases. 
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5. Computational Details  

Data augmentation software was implemented in C++ and Python 2.6 using 

Boost.Python and the Numpy and Scipy numerical and scientific computing libraries. 

Plots were generated with Matplotlib 0.98 graphing and plotting tools for Python. All 

diagrams were created in Inkscape 0.47. 

All results presented here come from 104 independent samples for each parameter 

combination.  
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