
Physica A 389 (2010) 4201–4208

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Distance measures for dynamic citation networks
Michael J. Bommarito II a,b,c,∗, Daniel Martin Katz d,a,c, Jonathan L. Zelner e,c, James H. Fowler f,g
a Department of Political Science, University of Michigan, Ann Arbor, United States
b Department of Mathematics, University of Michigan, Ann Arbor, United States
c Center for the Study of Complex Systems, University of Michigan, Ann Arbor, United States
d University of Michigan Law School, United States
e Department of Sociology, University of Michigan, Ann Arbor, United States
f Department of Political Science, University of California, San Diego, United States
g Center for Wireless and Population Health Systems, University of California, San Diego, United States

a r t i c l e i n f o

Article history:
Received 30 November 2009
Received in revised form 22 April 2010
Available online 11 June 2010

Keywords:
Citation network
Distance measure
Acyclic digraph
Community detection
Clustering
Judicial citations
Dimensionality

a b s t r a c t

Acyclic digraphs arise in many natural and artificial processes. Among the broader set,
dynamic citation networks represent an important type of acyclic digraph. For example,
the study of such networks includes the spread of ideas through academic citations, the
spread of innovation through patent citations, and the development of precedent in com-
mon law systems. The specific dynamics that produce such acyclic digraphs not only differ-
entiate them from other classes of graphs, but also provide guidance for the development
of meaningful distance measures. In this article, we develop and apply our sink distance
measure together with the single-linkage hierarchical clustering algorithm to both a two-
dimensional directed preferential attachment model as well as empirical data drawn from
the first quarter-century of decisions of the United States Supreme Court. Despite applying
the simplest combination of distance measure and clustering algorithm, analysis reveals
that more accurate and more interpretable clusterings are produced by this scheme.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction and motivation

While a variety of algorithms exist for the analysis of undirected or cyclic graphs, e.g., social networks, comparatively little
work has been done on acyclic digraphs. The previous literature has focused particularly on the development of canonical
random graph models or the application of algorithms for general graphs to this special class [1–4]. While these initial
papers havemade important theoretical and empirical contributions, investigation into clusteringmethods for these graphs
remains limited.
Dynamic acyclic digraphs arise naturally in the context of document citation networks. In these networks, vertices repre-

sent documents and arcs represent the citations from one document to another. Much of the previous literature on citation
networks, however, disregards the direction of these arcs (for a notable exception see Leicht et al. [5]). This choice results
in undirected graphs with many cycles, and thus allows the application of a wide variety of well-developed algorithms. On
the other hand, disregarding direction does discard information about time and the flow of dependency.
Recentworkdemonstrates that applyingmethods for undirected cyclic graphs to citationnetworksmay create difficulties

[4]. While it is important to identify deficiencies in existing methods, it is more helpful to develop alternative approaches
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designed to properly address these shortfalls. With respect to the context in question, we seek to develop domain-specific
methods and measures for citation networks that take the acyclic and directed nature of these networks into account. In
this article, we present a novel distance measure that provides better computational efficiency and qualitative accuracy for
acyclic digraphs.

2. Properties of dynamic citation networks

2.1. Topological ordering

Since citation networks are dynamic acyclic digraphs, they have a number of important properties that distinguish them
fromother networks. Themost fundamental property of acyclic digraphs is that there exists at least one topological ordering
of the vertices [6]. Such a topological ordering can also be used to index the dynamic network G, where G is a nested set
of increasing graphs {G1,G2, . . . ,G|V |}. Each Gn is a copy of Gn−1 with the addition of the nth document of the topological
ordering and its corresponding arcs. From this growth dynamic, it is clear that the most natural topological ordering is
actually the chronological ordering of the documents.
This ordering implies the existence of another distinguishing property for this class of graphs. Unlike many other

growing networks, the set of arcs having non-zero probability at each time step can be explicitly constrained. From a
generative framework, this representation acknowledges that arcs cannot assert relationships with unobserved vertices at
later times.1 Formally, such a process evolves on a filtration and can sample from the set of possible arcs at time t given
by ΩAt = {(x, y) : x 6∈ V (Gt−1), y ∈ V (Gt−1)}, where V (Gt) is the set of vertices in the graph Gt and t is the index
corresponding to the topological ordering. From a statistical framework, in which only the resulting graph is observed,
the previous statement can be written T (x) ≤ T (y) ⇔ P((x, y) ∈ A(G)) = 0, where T (x) is the time that vertex x was
introduced into the graph G. This asserts that certain events should not even be considered as possible in statistical models.

2.2. Sinks and dimensionality

A fact that follows immediately from the existence of a topological ordering is that there is at least one document that
makes no citations, and at least one document that has never been cited. Documents that contain no citations correspond
to nodes with out-degree zero and are called ‘‘sinks’’. The first vertex in the topological ordering is always a sink. Sinks
represent documents with no observed dependencies. Thus, with respect to the observed data, they mark the introduction
of at least one original or novel idea. Vertices that are not sinks rely on one or more of the ideas provided in one or more
sinks.
Though the above conception of citation networks is simple and reasonable, it contradicts patterns often observed in

empirical citation data. Namely, many documents contribute novel ideas, but very few feature zero outbound citations. In
order to confront this complication and refine our initial conception, it is important to remember documents and citations
exist in a high-dimensional space. Documentsmay contribute novel ideas in one dimension but draw support or comparison
from other dimensions—we call these documents ‘‘weak’’ sinks, as opposed to ‘‘strong’’ sinks whichmake no citations in any
dimension.
For a simple but concrete depiction of this problem, consider Fig. 1, a hypothetical subgraph containing vertices a, b, and

c , respectively. Vertex a is a ‘‘strong’’ sink, as it features no outbound citations. Vertex b is a ‘‘weak’’ sink, as it cites a on the
red dimension but generates no citations with respect to its blue dimension. Vertex c is not a sink, as it relies on b and does
not contain the red dimension.
Lacking appropriately granular data, it is often difficult for researchers to separate the dimensions contained within the

observable outputs of a given system. However, the above example highlights the specific usefulness of dimensional data. It
is important to note that dimensional data is only necessary to identify ‘‘weak’’ sinks but not ‘‘strong’’ sinks. For example, if
dimensional datawere removed fromFig. 1, thereby removing the coloring of the subgraph, only vertex awould be identified
as a sink.2
In the context of acyclic digraphs, consider a citation network comprised of linkages between academic articles. While

citations to a given article often converge upon a particular dimension or aspect of the work, a given article could be cited on
the basis of any of its n dimensions. Building from the example offered in Fig. 1, assume vertex b is an article containing both
a novel method and an interesting empirical result.3 If the blue dimension represents the article’s substantive topic while the

1 Draft circulation andpre-print repositories such as arXiv or SSRN allow for the existence ofmultiple versions of a given document. Given delays between
draft publication and subsequent publication, it is possible for triangles or higher-order cycles to exist. It is important for a researcher to consider how best
to represent documents that are not consistent with the filtration.
2 The added returns to differentiating strong and weak sinks will likely vary between applied contexts. However, dimensional data for arcs or vertices
would likely improve the quality of the resulting analysis.
3 While a given articlemay containmultiplemethods ormultiple results, for simplicity, assume an article containing a singlemethodological contribution
and a single substantive contribution.
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Fig. 1. An example of multidimensional vertex attachment. a and b are examples of ‘‘strong’’ and ‘‘weak’’ sinks respectively.

red dimension represents the article’s methodological contribution, then the basis upon which vertex c cites vertex b and b
cites vertex a can only be definitively revealed with dimensional data.
While this example is trivial, it reveals a broader property of acyclic graphs. While an author can cite any existing vertex,

authors have little control over the basis upon which their work is subsequently cited.4 One positive feature of the sink
method is that it preserves the choices made by the author at the time of authorship.

3. Distance measures

Distance measures between vertices are the predicate to a wide variety of algorithms in network analysis and machine
learning [8]. The usage of the terms ‘‘distance’’ and ‘‘similarity’’ are interchangeable in this context. Applications based on
the measures presented in this paper can be used in applications requiring similarity measures as well.
As noted earlier, we believe that distance measures employed should incorporate the properties of dynamic citation

networks that differentiate them from other classes of graphs. We consider the distance between vertices in the ‘‘citation’’
space, where all documents must orient themselves relative to one or more sinks of information. An appropriate distance
measure should decrease as two vertices share more information. The simplest such measure should consider the number
of shared sinks between two vertices. Given a vertex i and its set of ancestors Ai, the sinks of i are given by the set
Si = {x : δ+(x) = 0, x ∈ Ai} = S ∩ Ai. Here, δ+(x) is the notation for the out-degree of vertex x and S is the set of all
sinks of the graph G.
Using this notation, we can represent the distance between vertices i and j as the proportion of sinks they do not share:

Di,j = 1−
|Si∩Sj|
|Si∪Sj|

(1)

where |x| is the cardinality of set x. Though this distance measure is linearly decreasing in the proportion shared, one can
formulate a distance measure from any appropriately decreasing function. The remainder of our distance measures will
feature this linear form, but the reader should keep in mind that this is only exemplary.
Furthermore, this measure can be calculated quickly for all pairs of vertices, as its implementation involves little more

than graph traversal and set operations. The sets S can be calculated by performing either BFS or DFS from each sink k in the
graph and storing k in the set Si for each i visited in this initial search. The complexity of this step is linear in the number of
vertices on a sparse citation network. Next, a naive calculation of D(i, j) for all pairs would require

(
|V |
2

)
set comparisons.

By storing component information during the initial search algorithm, however, the number of pairs to be checked can be
significantly reduced for most graphs. More sophisticated implementations can achieve even better time complexity by
setting some values of D(i, j)within the initial search algorithm. Themost naive implementation is quadratic in the number
of vertices in the worst case.
In the above distance measure, all sinks are weighted equally. An alternative measure might weight the importance of

each sink by the number of unique ancestors shared between vertices i and j that are descended from a sink s of interest.
This set of s-ancestors of vertex i is given by Ai,s = {x : s ∈ Sx, x ∈ Ai} = Ai ∩ Ds, where Ds is the set of descendants of s.
This can be interpreted as the ancestors of iwho carry the information from sinks s. If even more detail is desired, we might
modify the above measure to also incorporate the set of paths from vertices i and j to the sinks of interest. We let Ps,i be the
set of path tuples (x1, . . . , xn) from s to i. The resulting general equation takes the form

Di,j = 1−

∑
s∈Si∩Sj

f (Ai,s, Pi,s, Aj,s, Pj,s)∑
s∈Si∪Sj

f (Ai,s, Pi,s, Aj,s, Pj,s)
. (2)

Straightforward choices of f involve the cardinality of these sets, but some care must again be taken if one desires
a distance metric that obeys all axioms. If needed, these functions may take on much more complexity. For instance,

4 Self-citation is one exception to this rule. See [7].
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the importance of a sink might decay as its shortest path length increases. Such fine-grained choices, however, require
theoretical justification based on the problem at hand. One should also note that path-based algorithms are likely to exhibit
worse time complexity than either of the first two measures.
The above distance measures all bear some similarity to the Jaccard similarity measure, as they involve intersections

in the numerator and unions in the denominator [9,10]. However, the Jaccard similarity index only takes into account the
neighbors of each node and ignores nodes at any further distance. In comparison, the distance measures presented above
may better capture and weight ‘‘shared ancestry’’ than the Jaccard measure.

4. Applications

Once a distance measure has been selected, a number of interesting research questions become relevant. One question
of particular interest is whether a given graph exhibits detectable clustering or community structure. A significant amount
of recent scholarship has been devoted to designing community detection algorithms for general graphs [11]. In the context
of citation networks, there are a number of issues that may impact both the accuracy and longitudinal stability of results
produced by traditional community detection methods [4].
One important issue is dimension frequency—that is, some topics may occur much more frequently than others in the

overall network. For example, suppose that a vertex z primarily concerns dimension d1, but also touches upon dimension
d2. If subsequent documents more often confront dimension d2 than d1, it is possible that z could receive more d2-related
citations than d1 citations. As a result, traditional community detection methods are more likely to cluster document z with
d2-related documents than with d1 documents. Though this example illustrates the way the role of documents within such
citation networksmay evolve, it is clear that traditional community detection algorithmsmay produce clusterings that differ
from a researcher’s specific goals.
For instance, one might seek to cluster documents in a manner consistent with the citation choices of the author at the

time the document was written. In this case, sink-based distance measures as presented above might be a good choice for
clustering. Take the document z in the example above. Suppose z has three sinks linked to dimension d1, but only one sink
dealingwith dimension d2. Even ifmanymore d2 documents cite z, they can only share one of four sinks atmost. By contrast,
d1 documents can share up to three sinks with z. Thus, regardless of the number of citations from d1 and d2 documents, z
can still be closer to d1 documents. Though many gradations of this example exist, when confronted with unnormalized
and high-dimensional citation information, sink-based distance measures are likely to be more robust to this issue than
traditional community detection methods.
To testwhethermeaningful clustering canbederived from these sinkdistancemeasures,we apply Eq. (1) to twonetworks

below, a theoretical model generated by two-dimensional directed preferential attachment and the other from substantive
data offered in the citations of the early United States Supreme Court.

4.1. Comparison on a random model

In Section 2.2, we argue that a number of issues can cause problems with existing community and clustering algorithms.
To test this claim, we have generated realizations from a citation model based on two-dimensional directed asymmetric
preferential attachment [12].
Themodel has two types of vertices— red and blue. At eachmodel step, a newvertex is introduced into the network.With

probability lr , a vertex will be red, and thus the complement lb is the probability of the vertex being blue. To determine how
many citations this vertexwillmake, we sample a uniform random integer between 1 andm. These citation arcs are assigned
according to the directed preferential attachment model, where red vertices have probability prr of citing red vertices and
probability prb of citing blue vertices. Likewise, blue vertices have probability pbr of citing red vertices and probability pbb of
citing blue vertices. For initial conditions, there are a nr initial red vertices and nb initial blue vertices.
In order to demonstrate the problems described above,we choose the parameters of themodel to emphasize our example

from Section 2.2. The vertex type rates are given by lr = 1
4 , lb =

3
4 , the maximum number of arcs per vertex is given by

m = 3, the preferential probabilities are given by prr = 1, pbr = 1
4 , pbb =

3
4 , and the initial number of vertices of each type

are given by nr = 2, nb = 1. This models a system with two dimensions where each vertex may only have one dimension,
and one dimension occursmuchmore frequently than another. Furthermore, though one dimension is perfectly homophilic,
the other attaches to both. Fig. 2 shows an example realization of this model, where the large squares denote sinks.
To further justify ourmethod,we compare our sink-based approachwith directed edge-betweenness [13]. First, we apply

Eq. (1) to calculate a full distancematrix for all pairs of vertices. Using thismatrix, we then apply a single-linkage hierarchical
clustering algorithm to these distances [14]. The resulting dendrogram and its implied clustering are shown in Fig. 3(a) and
Fig. 2, respectively. Next, we apply the directed edge-betweenness algorithm to produce the merge dendrogram in Fig. 3(b).
Figs. 2 and 3 are both generated from the same underlying network visualized in Fig. 2. The numbering on both figures
corresponds to the vertices, and the letters A through E correspond to the clusters detected by the sink method in Fig. 3(a).
The differences in Fig. 3 are striking, though not entirely unexpected. The sink method in Fig. 3(a) identifies five

‘‘communities’’ of vertices at identical branch location. From top to bottom, these branches correspond to (1) vertices that
trace back only to vertex 2, (2) vertices that trace back only to vertex 1, (3) vertices that trace back only to vertex 0, (4)
vertices that trace back to all three sinks 0, 1, and 2, and (5) vertices that trace back to both vertices 0 and 1.
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Fig. 2. Realization of a random model with two vertex types and asymmetric attachment probabilities. Clusters implied by the sink method are grouped
by gray boundaries.

Since the edge-betweenness algorithm produces binary branching dendrograms like most agglomerative or divisive
algorithms, Fig. 3(b) exhibits more complexity than Fig. 3(a). This complexity is sometimes warranted; however, it is often
the product of ties in the agglomerative or divisive decision criteria. Since the sink method relies only on hierarchical
clustering, it places vertices with equal distance at an equal branch position. In this case, the sink method identifies clusters
that are closely related to the underlying network formation process.

4.2. Results for the United States Supreme Court citations

To generate applicability beyond the context of a theoretical model, we applied our approach to the case-to-case citation
network of the first quarter-century of decisions of the United States Supreme Court. The structure of this network is of
interest to a wide variety of scholars including not only legal academics and social scientists, but also members of the
physical science community [15–17,5,18,20]. While it is possible to perform community detection analysis over the total
body of Supreme Court decisions, we selected a reduced window of decisions in order to qualitatively examine the results
of our algorithm.5
The Court’s early citation practices indicate an absence of references to its own prior decisions.While the court did invoke

well-established legal concepts, those concepts were often originally developed in alternative domains or jurisdictions.6 At
some level, the lack of self-reference and corresponding reliance upon external sources is not terribly surprising. Namely,
there often did not exist a set of established Supreme Court precedents for the class of disputeswhich reached the high court.
Thus, it was necessary for the jurisprudence of the United States Supreme Court, seen through the prism of its case-to-case
citation network, to transition through a loading phase. During this loading phase, the largest weakly connected component
of the graph generally lacked any meaningful clustering. However, this sparsely connected graph would soon give way, and
by the early 1820’s, the largest connected component displayed detectable structure.
Despite applying naive assumptions about the underlying nature of the data and least complicated clustering algorithm,

our qualitative analysis reveals that this scheme produces accurate clusterings. By applying our sink clustering method, we
obtain a dendrogram of the network’s largest weakly connected component shown in Fig. 4. The coloring in both Figs. 4 and
5 corresponds to two large clusters in the network. Arcs are colored blue or red if the head or tail are of the respective group.
Arcs colored green span the two groups.
Documents in both of these colorized clusters engage questions related to maritime and admiralty law.7 While not a

major focus of the docket of the modern court, the early court elaborated a number of important legal concepts through

5 A number of recent articles have called for more extensive qualitative validation of the clusters and communities detected by such methods [11,19].
In order to address these valid concerns, we have substantively vetted the outputs generated by our method.
6 The Supreme Court’s early jurisprudence references the decisions of England and France as well as several state courts.
7 It is important to note that some scholars carve a distinction between admiralty (maritime and private international law) and the laws of the sea (public
international law). For purposes of characterizing the topical domain, however, we believe it is appropriate to broadly identify these as reasonably related
to maritime and admiralty law.
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(a) Sink. (b) Betweenness.

Fig. 3. Comparison of dendrograms produced by the sink method and Girvan–Newman edge-betweenness.

the lens of these admiralty decisions. However, despite their general topical relatedness, these two clusters of cases engage
substantively different sub-questions, and are thus appropriately divided into separate clusters. For example, the red group
of cases engages questions of presidential power and the laws of war, as well as general interpretations of the Prize Acts of
1812. Meanwhile, the blue cluster engages questions surrounding tort liability, jurisdiction, and the burden of proof.

5. Conclusion

We present a novel conception of distance for dynamic citation networks that has trivial implementation and runtime.
We successfully apply our sink approach to both a theoretical model and the citation network of the first quarter-century
of United Supreme Court decisions. We demonstrate that our method obtains substantively meaningful clusterings and is
less susceptible than other clustering methods to common issues resulting from a high-dimensional citation space.
Although the substantive application presented here focuses on the decisions of the US Supreme Court, the applicability

of this method is likely not limited to judicial citations. For instance, one could imagine tracing the spread of technological
innovation in patent citations or the spread of ideas in a body of academic articles. In future work, we hope to apply this
method to such domains, using dimensional data where available. Furthermore, we hope to investigate choices of f in
Eq. (2) that match a number of observed phenomena such as the triangle-rich networks seen in Ref. [1].
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Fig. 4. Dendrogram produced by the sink method applied to the citation network of the first quarter-century of Supreme Court decisions. The outlined
groups correspond to the groups indicated in Fig. 5.

Fig. 5. Largest weakly connected component of the citation network of the first quarter-century of Supreme Court decisions. The vertex and arc colors
correspond to the groups indicated in Fig. 4.
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